Discrete Morse Theory and Localization

نویسندگان

  • Vidit Nanda
  • VIDIT NANDA
چکیده

Incidence relations among the cells of a regular CW complex produce a 2category of entrance paths whose classifying space is homotopy-equivalent to that complex. We show here that each acyclic partial matching on (the cells of) such a complex corresponds precisely to a homotopy-preserving localization of the associated entrance path category. Restricting attention further to the full localized subcategory spanned by critical cells, we obtain the discrete flow category whose classifying space is also shown to lie in the homotopy class of the original CW complex. This flow category forms a combinatorial and computable counterpart to the one described by Cohen, Jones and Segal in the context of smooth Morse theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Topology for Data Analysis

I develop algebraic-topological theories, algorithms and software for the analysis of nonlinear data and complex systems arising in various scientific contexts. In particular, I employ discrete Morse-theoretic techniques to substantially compress cell complexes built around the input data without modifying their core topological properties. Recently, I have generalized discrete Morse theory its...

متن کامل

Computing Persistent Homology via Discrete Morse Theory

This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method...

متن کامل

Discrete Stratified Morse Theory: A User's Guide

Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson [17]. We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplice...

متن کامل

Combinatorial realization of the Thom-Smale complex via discrete Morse theory

In the case of smooth manifolds, we use Forman’s discrete Morse theory to realize combinatorially any Thom-Smale complex coming from a smooth Morse function by a couple triangulation-discrete Morse function. As an application, we prove that any Euler structure on a smooth oriented closed 3-manifold has a particular realization by a complete matching on the Hasse diagram of a triangulation of th...

متن کامل

Discrete Morse theory and extendedL2 homology

A brief overviewof Forman’s discrete Morse theory is presented, from which analogues of the main results of classical Morse theory can be derived for discrete Morse functions, these being functions mapping the set of cells of a CW complex to the real numbers satisfying some combinatorial relations. The discrete analogue of the strong Morse inequality was proved by Forman for finite CW complexes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015